Code No.: 18332 M N

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (E.E.E.) VIII-Semester Makeup Examinations, July-2023 AI Applications to Power Systems (PE-VI)

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Q. N			Stem (of the	quest	ion			T	24			
1.	Draw the schema	tic of b	iologic	al neu	iron a	nd indi	cate	various parts	in	M 2	L	СО	PC
										2	1	1	1,2,3
2.	In the 4 input AN bias, output is represented as $[X_1, X_2, X_3] = [0.0.35]$. Evaluate tactivation function	[W ₁ , V 8, 0.6, he outp	V ₂ , W ₃ 0.4 and an out of	the war, b]. The man was the was the was the man was the man was the w	The in V_1 , W_2	betwee put and, W ₃ , W ₃	en ind wo	nputs and outpeight matrix a [0.1, 0.3, -0.	out re	2	3	1	1,2,3,
3.	Draw the block dia	gram of	filzzy	logic	grant.	0		10-11					
4.	Draw the block diagram of fuzzy logic system? Explain Law of Excluded middle and Law of Contradiction properties of fuzzy sets with a neat sketch?							2 2	1			1,2,3,12	
5.										1	4	2 1	1,2,3,12
6.	Explain the importa Illustrate Rank base following data?	d select	ion me	thod i	enetic in Ger	c Algonetic A	rithr	n?	2	2	3		,2,3,12
	Chromosome No.	1	1	T	T	T	7	with the	2	2	3	1,	2,3,12
	Fitness	0.7	0.2	3	4	5			5,5				
'.	Identify local minim function?		A. marine	0.6	0.2	0.8							
									2	3	4	1,2	,3,12
	Illustrate the different Algorithm specific particular suitable examples?	nce bet rameter	ween s in sto	comm	on co	ontrol mizatio	para on m	ameters and nethods with	2	1	4	1,2,	3,12
	Illustrate the advanta placement in Distribut	ges of ion Syst	optim	al Di	stribu	ted G	ener	ation (DG)	2	1	5	1,2,3	3,12
	Explain the equality coower flow problem?			inequ	ality	Constru			2				

3

1,2,3,12

1

Part-B $(5 \times 8 = 40 \text{ Marks})$

Applying Back Propagation Algorithm to evaluate the new weights after one iteration, when the network illustrated in the Figure below is 11. a) presented the input patter [0.4-0.7] and the target output (O) is 0.1. Use learning rate =0.6, sigmoidal activation function with slope =1 for both hidden layer and output layer neurons?

 $[V] = \begin{bmatrix} 0.1 & 0.4 \\ -0.2 & 0.2 \end{bmatrix}$ $[W] = \begin{bmatrix} 0.2 \\ -0.5 \end{bmatrix}$

- Explain Perceptron model and its algorithm for single output class?
- Explain any four types of membership function used in Fuzzy Logic System with a neat sketch and write their mathematical equation? 12. a)
 - Two fuzzy sets are given as

 $A = \left\{ \begin{array}{c} \frac{0.6}{X1} + \frac{0.5}{X2} + \frac{0.3}{X3} + \frac{0.2}{X4} \end{array} \right\}$

 $B = \left\{ \begin{array}{c} \frac{0.4}{X1} + \frac{0.4}{X2} + \frac{0.5}{X3} + \frac{0.8}{X4} \end{array} \right\}$

Compute the following (a) Multiplication of Fuzzy set A by crisp number 0.5

- (b) Union of A and B
- (c) Intersection of A and B
- (d) Algebraic product of A and B
- Explain any four types of crossover operations performed in Genetic 13. a) Algorithm with examples
 - Find the maximum value of function F(x) = Sin(x) using Genetic Algorithm at the end of two iterations. The range of x be $[0, \pi]$. Assume b) chromosome length of 10 bits, population size as 10. Perform single point crossover at 5th bit position. Perform mutation operation on 8th bit for any two solutions. Apply tournament selection method for parent selection. Assume Crossover probability, Elitism probability and Mutation probability as 0.9, 0.2 and 0.03 respectively. Assume data suitably wherever required and specify the same?
 - Explain step-by-step implementation of Jaya optimization algorithm 14. a) with suitable equations?

- 1,2,3,12 2
- 1,2,3,12
- 1,2,3,12 2
- 3

- 1,2,3,12
- 1,2,3,12 3 3
- 1,2,3,12 2 3

Code No.: 18332 M N

	b) Apply Java Algor	thm for all :						. 103	32 M N
	b) Apply Jaya Algori Minimize $F(x_1, x_2)$	$rac{1}{1}$ for solving the	e follo	wing of	otimization proble	m.	5	3	4 1,2,3,
	The range of desig								T 1,2,5,
	-100 < 2	$c_1 \le 100$ and							
	$-100 \le x$	$1 \le 100$ and $1 \le 100$							
	Identify Best soluti	2 \(\) 100 .							
	Identify Best soluti data wherever requ	ired	ng two	iteratio	ns. Assume suital	ole			
		Population No.	x_1	_	1				
		1	-5	10					
		2		18					
		3	14	63					
		4	70	-6					
	-		-8	7					
15. a)	Evaloin -1	5	-12	-18					
13. a)	without losses using						3	5	1,2,3,12
b)	Explain the signific	ance of and							
							2	5	1,2,3,12
16. a)	The title title title	Tont tone 1 .			ique?				
							2	1	1,2,3,12
b)	Tol the given figure	below evaluate	the	1 1					
	using centroid metho	d?	me mei	mbersh	ip function value	4	3	2	1,2,3,12
	4 🛦								
	0.5								
		/							
	0.3	/							
			1						
				1					
	0 1	3 7	75 0	3	2				
	Answer any two of the	following	,.J 8	9 ,					
a)	With suitable example	following:							
	With suitable example Genetic Algorithm	es, explain the following	lowing	selection	on operations in	4	2	3	12212
i	. Roulette wheel met	and					2	3	1,2,3,12
i	i. Linear Ranking sele	ction					¥		
1	II. Exponential Rankin	gelection							
i	v. Tournament selection	n							
b) F	explain step-by-step in with suitable equations	nnlementation of	D(* 1	~					
V	ith suitable equations	?	Particle	e Swar	n optimization	4	2	4	1,2,3,12
c) E	xplain in detail proced	ura adamt 1 C							
(1	xplain in detail proced OG) placement using (Marks: L: Bloom's Test	Genetic Algorithm	oumal I	Istribu	ted Generation	4	2	5	1,2,3,12
	Marks; L: Bloom's Tax						Annel!		,,,,,2

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level - 1	PO: Programme		
ii)	Blooms Taxonomy Level – 1	20%		
iii)	Blooms Taxonomy Level – 3 & 4	38.75%		
	20101 - 3 & 4	41.25%		